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The theory of a uniform thermophoretic motion of a volatile high-viscosity sphere with the phase transition of
one component of a moderately rarefied binary gas mixture on its surface has been constructed on the basis
of the hydrodynamic method in the regime with slip. The relative influence of the evaporation coefficient and
the boundary temperature jumps on the distributions of the velocities, temperatures, and concentrations of the
volatile component and the thermophoresis rate has been analyzed. Allowance has been made for the ther-
modiffusion terms, Stefan effects, and the heat due to the convective transfer of the substance of the con-
densed phase. The formula obtained has wider limits of application than the existing results. The conclusions
of the traditional theories are successfully generalized to the cases of weak and moderately strong processes
of diffusion evaporation of a single high-viscosity droplet that moves in a nonuniformly heated binary mixture
of gases.

Formulation of the Problem. Let the temperature gradient AT be created and be kept constant in an un-
bounded stationary binary gas mixture. A volatile spherical droplet of radius R of a pure liquid with an evaporation
coefficient α is placed in such a nonuniformly heated medium (on the surface, we have the phase transition of one
component of the gas mixture). Evaporation (condensation) of the molecules of the liquid occurs for Mach numbers
much less than unity. The molecules of the condensed phase form the first (volatile) component of the binary gas mix-
ture. The droplet surface is impermeable to the gas molecules of the second (carrier) component. The thermal and dif-
fusion creeps (slips) of the gas along the boundary surface cause the relative motion of a particle in the gaseous
medium.

The ordered uniform motion of a particle in the regime with slip is characterized by the thermophoretic ve-
locity UTph in the laboratory coordinate system. The particle is acted upon by thermodiffusion-phoretic and reactive
forces (FTph, FDph, and Fα) that are sought to be compensated for with the viscous force of the ambient medium Fv.
The thermophoresis rate attains the value UTph if the resultant force disappears, i.e.,

F = FTph + FDph + Fα + Fv = 0 .

It is obvious that the influence of volatility on the thermophoresis of a body is bilateral: first, the temperature
distribution inside the particle and in the vicinity of it changes, which results in the additional slip of the gaseous me-
dium along the body surface; second, the ambient space becomes saturated with the vapor of a volatile and the ther-
modiffusion of the components of the gas mixture is enhanced.

The problem is solved in a spherical coordinate system (r, θ, ϕ). Its origin is rigidly tied to the geometric
center of the droplet and the Oz axis is directed along the vector AT = (∇ T∞). Then the particle is at rest in the in-
dicated inertial coordinate system while the center of mass of the external medium is moving with the sought velocity
U = −UTph.
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The binary gas mixture is considered to be incompressible, viscous, isotropic, and continuous — the Knudsen
number is sufficiently small:

Kn = 
λ
R

 << 1 ,   λ = max (λ1, λ2) .

The relative changes in the temperature and concentration of the components of the gas mixture are assumed
to be small. This enables us to disregard the temperature and concentration dependences of the coefficients of molecu-
lar transfer and to consider them to be constant values for unperturbed values of T0 and C0. The liberation of heat by
internal friction in dissipation of energy is not taken into account.

The dynamics of the droplet occurs for small Reynolds numbers:

Re = 
ρUR

η
 << 1 ,

and the nonlinear terms (inertial term and convective ones) are dropped in the equations of slow (creeping) motion of
the external medium and of heat and mass transfer. The external mass forces do not act. The motion of the high-vis-
cosity droplet liquid is disregarded. There are no thermal sources outside the aerosol particle and inside it.

Let the times of hydrodynamic, thermal, and concentration relaxations be rather short as compared to the char-
acteristic time of transfer of a droplet. Then the state of an inhomogeneous gaseous medium is described within the
framework of hydrodynamic analysis (the macroscopic approach to continua is employed) in the quasistationary ap-
proximation (the distributions v(r), p(r), C(r), T(r), and T′(r) are considered to be steady at any instant of time) by
the axisymmetric equations of Stokes, continuity, and Laplace:

η∆v = ∇ p ,   div v = 0 ,   ∆C = 0 ,   ∆T = 0 ,   ∆T′ = 0 .

Let the local unit characteristic vectors (n = ir, s = iθ, iϕ) form the right-hand system [1]. Then the conditions

r → ∞ :   v = Uiz ,   T = T0 + ATz ,   C = C0 ;

r = R :   n 



n1v − 

(n1 + n2)2
 m2

ρ
 D (∇ C + KTD ∇ ln T)




 = αν (n1 + n2) (Cs − C) ,

n 



n2v + 

(n1 + n2)2
 m1

ρ
 D (∇ C + KTD ∇  ln T)




 = 0 ,   sv = s (KTsl

′ ∇ T + KDsl
′ ∇ C) ,

T = T′ + n (VTT∇ T + VTCT′∇ C) ,   n (− κ∇ T + κ′∇ T′) = − Lm1αν (n1 + n2) (Cs − C) ,

Fz = 0 ,   ρ = m1n1 + m2n2 ,

C = 
n1

n1 + n2
 ,   Cs = 

n1s

n1 + n2
 ,   ν = 





kT

2πm1





1 ⁄ 2

 .

hold at infinity and on the boundary surface. 
The above conditions have the following physical meaning:
1. At infinity, the axisymmetric flow of the external medium is uniform in space and has the velocity U in

the direction of positive values of the Oz axis while the fields of temperature T(r) and relative concentration C(r) of
the volatile component of the gas mixture are not perturbed.

2. The normal flow of the first component at the phase boundary is represented as the normal flow of the
volatile vapor that is removed from the surface through the Knudsen number and is in proportion to the evaporation
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coefficient α. It should be noted that the latter must be replaced by a coefficient of the form 2α/(2 − α) that general-
izes the Hertz–Knudsen condition [2, 3]. However it is everywhere replaced by α as the main approximation in ex-
pansion of the fraction 2α/(2 − α) for α << 1. This is because of the following fact: the numerical analysis shows that,
when α D 1, the rate of thermophoretic transfer of an aerosol particle is independent, in practice, of the coefficient α,
whereas the indicated relationship is substantial in the case of weak and moderately strong evaporation of the volatile
(Fig. 1, where curves a and b reflect the dependence of the thermophoresis rate on the evaporation coefficient for dif-
ferent values of the unperturbed temperature in the presence of the coefficient of temperature jump kTT and in the ab-
sence of it respectively).

The surface of the aerosol particle is impermeable to the carrier component. In representing the thermodiffu-
sion force, we drop the barodiffusion term and the term with forces since they do not act on the gas molecules.

3. The tangential component of the external-medium velocity vs is equal to the sum of the rates of thermal
and diffusion slips, which are in proportion to the tangential gradients ∇ sT and ∇ sC respectively. The proportionality
factors

KTsl
′  = KTsl 

η
ρT

 ,   KDsl
′  = KDslD

are determined by the mathematical methods of the kinetic theory of gases. In the work, we disregard the effect of
isothermal slip with a velocity of the order of O(KnU).

4. The temperature jumps are caused by the gradients (normal to the interface) of the thermodiffusion quanti-
ties in the Knudsen layer. The gaskinetic coefficients VTT and VTC enable us to evaluate the influence of this layer on
the vector velocity field v(r), the scalar distributions C(r), T(r), and T′(r), and the value of the sought rate U of ther-
mophoretic transfer of a moderately large volatile high-viscosity sphere. The coefficients VTT and VTC have a value of
the order of O(KnR) and they are found by solution of the system of Boltzmann kinetic equations.

5. The normal heat flux with allowance for plate transitions is continuous at the boundary of the condensed
phase. The radial mass flux

ανm1 (n1 + n2) (Cs (T) − C (T))

of the volatile component of the gas mixture and the difference of the heat flux outside the droplet and inside it are
opposite in sign.

Fig. 1. Rate U of thermophoresis of a droplet of ethyl alcohol vs. evaporation
coefficient α for AT = 100 K/m, R = 10 µm, C0 = 0.01, and KTD = 0 (ther-
modiffusion is absent). Curves 1a–3a are constructed with allowance for the
jump kTT of the temperature in the binary mixture of gases C2H5OH–N2, while
curves 1b–3b are constructed without allowance for the jump. 1a and 1b, 2a
and 2b, 3a and 3b correspond to the unperturbed temperatures T0 = 283, 303,
and 323 K. U, µm/sec.
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6. The resultant force F acting on the aerosol particle on the source side of the incoming flow of the external
medium is equal to zero.

The theory of motion of the aerosol particle disregards a change in the unperturbed temperature T0 with time.
In the general case, the partial pressure p1s and the number concentration n1s of a saturated vapor of a pure

droplet substance depend on the absolute temperature T′ of the condensed-phase surface, the electric charge, and the
droplet radius. Under the conditions of the problem, the state of the saturated vapor is far from being critical and it is
described in the approximation of an ideal gas. We believe that the vapor pressures near the surface with a low cur-
vature and in the vicinity of a plane surface differ insignificantly. Then the approximate integral of the Clausius–
Clapeyron equation for the dynamic equilibrium of the liquid and gaseous phases of the volatile of an uncharged
droplet is written in dimensional form:

p1s (T) = n1s (T) kT = p1s (Tw) exp 




Lµ
RgTw

 



1 − 

Tw
T








 .

The temperature dependence of the relative concentration of the saturated vapor of the volatile

Cs (T) = 
n1s (T)
n1 + n2

 = Cs (Tw) 
Tw

T
 exp 





Lµ
RgTw

 



1 − 

Tw
T









is expanded in a Taylor series in powers (T − Tw):

Cs (T) = Cs (Tw) + 
∂Cs

∂T



 T=Tw

 (T − Tw) + ... .

In the case of a low nonisothermicity of the droplet, we retain, in the expansion, the first two terms:

Tw

T
 = 1 − 

T − Tw

Tw
 + ... ,   exp 





Lµ
RgTw

 



1 − 

Tw
T








 = 1 + 

Lµ
RgTw

 
T − Tw

Tw
 − ... ,

Tw

T
 exp 





Lµ
RgTw

 



1 − 

Tw

T







 = 1 + 





Lµ
RgTw

 − 1



 
T − Tw

Tw
 + ... ,

Cs (T) = Cs (Tw) 



1 + 





Lµ
RgTw

 − 1



 
T − Tw

Tw
 + ...




 .

Therefore, we have the estimate of the temperature change of the function Cs(T) at the point T = Tw:

∂Cs

∂T



 T=Tw

 = 
1

Tw
 Cs (Tw) 





Lµ
RgTw

 − 1



 ,   Cs (Tw) = Cs (T0) 

T0

Tw
 exp 





Lµ
RgTw

 




Tw
T0

 − 1







 ,

since the equality

Cs (T0) = Cs (Tw) 
Tw
T0

 exp 




Lµ
RgTw

 



1 − 

Tw

T0








 .

holds.
Thus, the linearized boundary conditions have the form

vθ = KTsl 
η0

ρ0T0
 ∇ θT + KDslD∇ θC ,
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n10vr − 
n0

2
m2

ρ0
 D 




∇ rC + 

KTD

T0
 ∇ rT




 = ανn0 




Cs (Tw) + 

∂Cs

∂T



 T=Tw

 (T′ − Tw) − C



 ,

n20vr + 
n0

2
m1

ρ0
 D 




∇ rC + 

KTD

T0
 ∇ rT




 = 0 ,   T = T′ + VTT∇ rT + VTCT′∇ rC ,

− κ0∇ rT + κ0
′ ∇ rT

′ = − Lm1ανn0 



Cs (Tw) + 

∂Cs

∂T



 T=Tw

 (T′ − Tw) − C



 ,   Fz = 0 ,

n0 = n10 + n20 ,   ρ0 = m1n10 + m2n20 ,   η0 = η (T0, C0) ,   κ0 = κ (T0, C0) ,   κ0
′  = κ′ (T0) .

The solution of the axisymmetric hydrodynamic problem for an incompressible gas medium can conveniently
be represented in terms of the stream function Ψ(r). In the right-hand system of orthogonal spherical coordinates (r,
θ, ϕ), the velocity components and the z projection of the resultant force acting on the sphere r = R in the Stokes
approximation are determined in terms of the stream function Ψ = Ψ(r, θ) from the formulas [1]

vr = − 
1

r
2
 sin θ

 
∂Ψ

∂θ
 ,   vθ = 

1

r sin θ
 
∂Ψ

∂r
 ,   vϕ = 0 ,   Fz = πη0 ∫ 

0

π

r
4
 sin θ 

∂

∂r
 




E
2Ψ

r
2




 dθ .

Upon making the physical quantities in the equations of hydrodynamics and heat and mass transfer and in the
boundary conditions dimensionless

r~ = 
r

R
 ,   v~r = 

vr

U
 ,   v~θ = 

vθ

U
 ,   Ψ

~
 = 

Ψ

UR
2
 ,   T

~
 = 

T − T0

ATR
 ,   T

~′ = 
T′ − T0

ATR
 ,   F

~
z = 

Fz

6πη0RU

(the tilde above is dropped), the formulation of the problem has the following linearized form:

E
4Ψ (r, ξ) = 0 ,   ∆T = 0 ,   ∆T′ = 0 ,   ∆C = 0 ; (1)

r → ∞ :   Ψ (r, ξ) = − 
1
2

 r
2
 (1 − ξ2) ,   T = z ,   C = C0 ; (2)

r = 1 :   



C0 + (1 − C0) 

m2
m1




 Uvr = αν 




Cs (τ) + 

∂Cs

∂T



 T=τ

 (T′ − τ) − C  



 ; (3)

(1 − C0) 



C0 + (1 − C0) 

m2

m1




 Uvr + 

D

R
 




∂C

∂r
 + KTDε 

∂T

∂r




 = 0 ; (4)

Uvθ = − KTsl 
η0

ρ0T0
 AT √1 − ξ2  

∂T

∂ξ
 − KDsl 

D

R
 √1 − ξ2  

∂C

∂ξ
 ; (5)

εT = εT′ + εkTT 
∂T

∂r
 + kTC 

∂C

∂r
 ; (6)
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− 
κ0

κ0
′
 
∂T

∂r
 + 

∂T′

∂r
 = − 

Lm1ανn0

ATκ0
′

 



Cs (τ) + 

∂Cs

∂T



 T=τ

 (T′ − τ) − C  



 ; (7)

Fz = 0 , (8)

where

τ = 
Tw − T0

ATR
 << 1 ;   ε = 

ATR

T0
 << 1 ;   kTT = 

VTT

R
 D O (Kn) ;   kTC = 

VTC
R

 D O (Kn) .

The differential operators of Stokes and Laplace in the spherical coordinate system have the structure (E4 =
E2(E2))

E
2
 = 

∂2

∂r
2
 + 

1 − ξ2

r
2

 
∂2

∂ξ2
 ,   ∆ = 

1

r
2
 

∂

∂r
 



r
2
 

∂
∂r




 + 

1

r
2
 

∂

∂ξ
 



(1 − ξ2) 

∂

∂ξ




 ,   − 1 ≤ ξ = cos θ ≤ + 1 .

If a droplet of a pure liquid is coated with a thin film of any contaminant, such an aerosol particle is for-
mally considered as being nonvolatile (evaporation coefficient is α → 0). In this case, the condition of impermeability
of the condensed-phase surface to the external medium holds, i.e., the normal component of the velocity at the bound-
ary r = 1 vanishes.

Determination of the Rate of Thermophoretic Transfer of a Particle. The solutions of Eqs. (1) in general
form are represented as

Ψ (r, ξ) =  ∑ 

n=2

∞

 



anr

n
 + bnr

−n+1
 + cnr

n+2
 + dnr

−n+3


 Jn (ξ) ,

vr (r, ξ) = − ∑ 

n=2

∞

 



anr

n−2
 + bnr

−n−1
 + cnr

n
 + dnr

−n+1


 Pn−1 (ξ) ,

vθ (r, ξ) =  ∑ 

n=2

∞

 



nanr

n−2
 − (n − 1) bnr

−n−1
 + (n + 2) cnr

n
 − (n − 3) dnr

−n+1


 

Jn (ξ)

√1 − ξ2
 ,

T

T′
 (r, ξ) =  ∑ 

n=0

∞

 










en

en
′
 r

n
 + 

fn

fn
 ′
 r

−n−1









 Pn (ξ) ,   C (r, ξ) =  ∑ 

n=0

∞

 



gnr

n
 + hnr

−n−1


 Pn (ξ) .

From conditions (2), with allowance for the finiteness of the temperature at the center of the droplet, we have

a2 = − 1 ,   an = 0 ,   if   n ≥ 3 ;   cn = 0 ,   if   n ≥ 2 ;   e0 = 0 ,   e1 = 1 ,   en = 0 ,   if   n ≥ 2 ;

fn
 ′ = 0 ,   if   n ≥ 0 ;   g0 = C0 ,   gn = 0 ,   if   n ≥ 1 .

As a result, we obtain the expansions

Ψ (r, ξ) = − r
2
J2 (ξ) +  ∑ 

n=2

∞

 



bnr

−n+1
 + dnr

−n+3


 Jn (ξ) ,   T (r, ξ) = rξ +  ∑ 

n=0

∞

 fnr
−n−1

 Pn (ξ) ,

1066



T′ (r, ξ) =  ∑ 

n=0

∞

 en
′ r

n
Pn (ξ) ,   C (r, ξ) = C0 +  ∑ 

n=0

∞

 hnr
−n−1

 Pn (ξ) ,

which are substituted into boundary conditions (3)–(7). Then, using properties (A1)–(A3) of ultraspherical Gegenbauer

polynomials of order n and degree %
1
2

Jn (ξ) = Cn
−1 ⁄ 2 (ξ) ,   Pn (ξ) = Cn

+1 ⁄ 2 (ξ) ,

by virtue of orthogonality conditions of the (A5)–(A6) type, for integration constants we can write the algebraic equa-
tions

Cs (τ) − C0 + 
∂Cs

∂T



 T=τ

 (e0
′  − τ) − h0 = 0 , (9)

− 



C0 + (1 − C0) 

m2

m1




 U (− 1 + b2 + d2) = αν 





∂Cs

∂T



 T=τ

 e1
′  − h1  




 , (10)

− 



C0 + (1 − C0) 

m2

m1




 U (bn+1 + dn+1) = αν 





∂Cs

∂T



 T=τ

 en
′  − hn  




 , (11)

h0 + εKTDf0 = 0 , (12)

(1 − C0) 



C0 + (1 − C0) 

m2

m1




 U (− 1 + b2 + d2) + 

D

R
 



2h1 + εKTD (− 1 + 2f1)



 = 0 , (13)

(1 − C0) 



C0 + (1 − C0) 

m2

m1




 U (bn+1 + dn+1) + 

D

R
 (n + 1) 



hn + εKTDfn




 = 0 , (14)

U (2 + b2 − d2) = 2KTsl 
η0

ρ0T0
 AT (1 + f1) + 2KDsl 

D

R
 h1 , (15)

U 


nbn+1 + (n − 2) dn+1




 = KTsl 

η0

ρ0T0
 ATn (n + 1) fn + KDsl 

D

R
 n (n + 1) hn , (16)

ε (1 + kTT) f0 − εe0
′  + kTCh0 = 0 , (17)

ε (1 + 2kTT) (1 + f1) − εe1
′  + 2kTCh1 = 3εkTT , (18)

ε 


1 + (n + 1) kTT




 fn − εen

′  + (n + 1) kTChn = 0 , (19)
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κ0

κ0
′
 f0 = − 

Lm1ανn0

ATκ0
′

 



Cs (τ) − C0 + 

∂Cs

∂T



 T=τ

 (e0
′  − τ) − h0  




 , (20)

κ0

κ0
′
 (− 1 + 2f1) + e1

′  = − 
Lm1ανn0

ATκ0
′

 




∂Cs

∂T



 T=τ

 e1
′  − h1  




 , (21)

κ0

κ0
′
 (n + 1) fn + nen

′  = − 
Lm1ανn0

ATκ0
′

 




∂Cs

∂T



 T=τ

 en
′  − hn  




 , (22)

where n ≥ 2.
From relations (9), (12), (17), and (20) we find

f0 = e0
′  = h0 = 0 ,   Cs (τ) − C0 − τ 

∂Cs

∂T



 T=τ

 = 0 . (23)

Integration over the surface of the sphere r = 1 with account for relations (A4) yields

Fz = 
1

6
  ∫ 

−1

+1

 r
4
 
∂

∂r
 




E
2Ψ

r
2




 dξ = 

2

3
 d2 ,

whence the coefficient d2 vanishes by virtue of condition (8).
From Eqs. (10) and (15) with account for equality (18) we obtain

3 



C0 + (1 − C0) 

m2

m1




 U = − 3kTTαν 

∂Cs

∂T



 T=τ

 +

+ 



2 




C0 + (1 − C0) 

m2

m1




 KTsl 

η0

ρ0T0
 AT + αν (1 + 2kTT)

∂Cs

∂T



 T=τ

  



 (1 + f1) +

+ 



2 




C0 + (1 − C0) 

m2

m1




 KDsl 

D

R
 − αν 




1 − 2 

kTC

ε
∂Cs

∂T



 T=τ

  







 h1 .

By virtue of relations (10), (13), and (18) we find




(1 − C0) (1 + 2kTT)

ανR

D
 
∂Cs

∂T



 T=τ

 − 2εKTD  



 (1 + f1) −

− 



2 + (1 − C0) 

ανR

D
 



1 − 2 

kTC

ε
∂Cs

∂T



 T=τ

   







 h1 = 3 




(1 − C0) kTT 

ανR

D

∂Cs

∂T



 T=τ

 − εKTD  



 .

Equation (21) with account for equality (18) is written in the form







2 

κ0

κ0
′
 + (1 + 2kTT) 







1 + 

Lm1ανn0

ATκ0
′

∂Cs

∂T



 T=τ

  













 (1 + f1) −
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− 







Lm1ανn0

ATκ0
′

 − 2 
kTC

ε
 






1 + 

Lm1ανn0

ATκ0
′

∂Cs

∂T



 T=τ

  













 h1= 3 








κ0

κ0
′
 + kTT 







1 + 

Lm1ανn0

ATκ0
′

∂Cs

∂T



 T=τ

  













 .

Solution of the system of the last two equations yields 1 + f1 = 3δ′ ⁄ δ and h1 = 3δ′′ ⁄ δ,

δ = 2 (1 − C0) 
ανR

D
 









kTT − 2 

kTC

ε
 
κ0

κ0
′

∂Cs

∂T



 T=τ

  









 + 4 (kTT − kTCKTD) 







1 + 

Lm1ανn0

ATκ0
′

∂Cs

∂T



 T=τ

  






 +

+ 






1 + 2 

κ0

κ0
′







 



2 + (1 − C0) 

ανR

D




 + 2 

Lm1ανn0

ATκ0
′

 




∂Cs

∂T



 T=τ

 + εKTD  



 , (24)

δ′ = (1 − C0) 
ανR

D
 









kTT − 2 

kTC

ε
 
κ0

κ0
′

∂Cs

∂T



 T=τ

  









 + 2 (kTT − kTCKTD) 







1 + 

Lm1ανn0

ATκ0
′

∂Cs

∂T



 T=τ

  






 +

+ 
κ0

κ0
′
 



2 + (1 − C0) 

ανR

D




 + εKTD 

Lm1ανn0

ATκ0
′

 , (25)

δ′′  = 
κ0

κ0
′
 (1 − C0) 

ανR

D

∂Cs

∂T



 T=τ

 + εKTD 






1 + 

Lm1ανn0

ATκ0
′

∂Cs

∂T



 T=τ

  






 . (26)

It is obvious that the relation

δ = 2δ′ + (1 − C0) 
ανR

D
 + 2 







1 + 

Lm1ανn0

ATκ0
′

∂Cs

∂T



 T=τ

  






 .

holds.
Thus, we obtain the expression for the velocity U = −UTph of the center of inertia of the gaseous medium

relative to the droplet:

U = 2KTsl 
η0

ρ0T0

 AT 
δ′

δ
 + 2 KDsl 

D

R
 
δ′′

δ
 + 

αν

C0 + (1 – C0) 
m2

m1

 






2 

κ0

κ0
′

∂Cs

∂T



 T=τ

 − εKTD 






 
1

δ
 . (27)

Equations (11), (14), (16), (19), and (22) yield

bn+1 = dn+1 = fn = en
′  = hn = 0 ,   n ≥ 2 .

By solution of the thermodiffusion problem we obtain that the average reduced temperature τ on the boundary
surface is equal to zero. Then the transcendental algebraic equation (23) shows that the theory constructed holds for
C0 → Cs(T0) when the binary mixture of gases is sufficiently saturated with the vapor of the volatile component. The
diffusion regime of evaporation of the high-viscosity sphere is observed, as a rule, for ordinary temperatures, when
Cs(T0) << 1.

Analysis of the Results. In formula (27), the first and second terms proportional to the gaskinetic coefficients
KTsl and KDsl are determined by, respectively, the thermal and diffusion slips of the binary gas mixture. The third
term describes the reactive part of a momentum that acts on the aerosol particle and is related to the phase transition
on its surface. The temperature dependence of the relative concentration of the saturated vapor of the volatile droplet
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substance and the thermodiffusion phenomena in the volume of the gas mixture cause a nonuniform evaporation (con-
densation) on the condensed-phase surface. As a result, we observe the reactive effect.

The derivation of the traditional theory [4] of thermophoresis of a volatile one-component spherical droplet in
a moderately rarefied binary gas mixture in the limiting case of a high-viscosity sphere in the absence of concentration
jumps, thermodiffusion and Barnett terms, and the Dufour effect has the error committed in representation of the reac-
tive component of the velocity U. The calculation formula has been obtained with allowance for the heat flux on the
particle surface, which is due to the convective transfer of the volatile mass, and it must have the form

U = 
2

δ
 










KTsl
′ ATδ′ + KDsl 

D

R
 
κ0

κ0
′

∂Cs

∂T



 T=τ

 + 
1

1 − C0

 










1

C0 + (1 − C0) 
m2

m1

 + 2 
n0

n0
′











 
D

R
 
κ0

κ0
′

∂Cs

∂T



 T=τ

    










 ,

δ = 1 + 2 
κ0

κ0
′
 + 

2

C0 + (1 − C0) 
m2
m1

 
Lm2n0D

ATRκ0
′

∂Cs

∂T



 T=τ

 +

+ 2kTT 










1 + 
2

C0 + (1 − C0) 
m2

m1

 
Lm2n0D

ATRκ0
′

∂Cs

∂T



 T=τ

  










 − 4kTC 
κ0

κ0
′
 

T0

ATR

∂Cs

∂T



 T=τ

 ,

δ′ = 
κ0

κ0
′
 + kTT 











1 + 
2

C0 + (1 − C0) 
m2

m1

 
Lm2n0D

ATRκ0
′

∂Cs

∂T



 T=τ

  










 − 2kTC 
κ0

κ0
′
 

T0

ATR

∂Cs

∂T



 T=τ

 .

This result completely coincides with formula (27) in the absence of thermodiffusion and in the case of a rather strong
diffusion evaporation of the volatile substance of the particle where

C0 << 1 << 
ανR

D
 ,   

n0

n0
′
 << 1 .

The evaporation (condensation) coefficient is usually defined as the probability that a vapor molecule upon its
arrival at the liquid surface will not reflect from it. The value of the coefficient is found in an indirect manner, for
example, in the process of measurements of the rate of condensation growth or evaporation of droplets. It should be
noted that experimental determination of α is a difficult problem at present and the data given in the literature on this
subject are contradictory. Thus, a detailed analysis of numerous procedures of measurement of the coefficient α [5, 6]
has shown that experimental data [7, 8] for water droplets contain low values of α D 0.01, whereas in other experi-
mental investigations [9, 10] a value of α D 1 has been obtained.

Formula (27) yields that for

∂Cs

∂T



 T=τ

 > 0 ,   KTD = kTT = kTC = 0

the particle seeks to move to colder regions of the gas medium ("positive" factors) due to the first and third terms of
it. The action of the contribution of the second term on the direction of the thermophoresis rate depends on the sign
of the coefficient KDsl: the rate is directed toward the vector AT when m1 > m2 (KDsl < 0), and its direction is opposite
when m1 < m2 (KDsl > 0).

Analysis of the equations for (1 + f1) and h1 shows that one can disregard the influence of volatility on the
thermodiffusion scalar fields and the velocity of thermophoretic motion of a particle when: 1) the relative temperature
differences are larger than the change in the relative concentration of the saturated vapor of the volatile component of
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the gas mixture; 2) diffusion evaporation of the low-thermal-conductivity substance of a droplet is weak; 3) the action
of thermodiffusion effects is quite substantial:

ανR

D
 << 1 ,   

∂Cs

∂T



 T=τ

 D ε  KTD  ,   kTCKTD D 1 ,   
Lm1ανn0

ATκ0
′

 << 
kTC

ε
 .

The temperature field outside the droplet and inside it and the distribution of the relative concentration of the volatile
component of the gas mixture

T (r, ξ) = rξ + f1r
−2ξ ,   T′ (r, ξ) = e1

′ rξ ,   C (r, ξ) = C0 + h1r
−2ξ ,  f1 = 3 

δ′

δ
 − 1 ,   e1

′  = 3 
δ′

δ
 ,

h1 = 3 
δ′′

δ
 , δ → 2 










1 + 2 








κ0

κ0
′
 + kTT − kTCKTD

















 ,   δ′ → 2 








κ0

κ0
′
 + kTT − kTCKTD







 ,   δ′′  → εKTD

correspond to the solid nonvolatile aerosol particle. Then, with allowance for the boundary temperature jumps and ther-
modiffusion effects, the value of the rate of thermophoretic transfer is equal to

U′ = KTsl 
η0

ρ0T0
 AT 

2 







κ0

κ0
′
 + kTT − kTCKTD








1 + 2 







κ0

κ0
′
 + kTT − kTCKTD








 + KDsl 
D

T0
 AT 

KTD

1 + 2 







κ0

κ0
′
 + kTT − kTCKTD








 .

Upon combining the above conditions and the formula

∂Cs

∂T



 T=τ

 = εCs (T0) 




Lµ
RgT0

 − 1




we have the following criteria enabling us to disregard the "volatility" of the droplet:

ανR

D
 << 1 ,   Cs (T0) 





Lµ
RgT0

 − 1



 D  KTD  ,   kTCKTD D 1 ,   

Lm1ανRn0

κ0
′

 << kTCT0 .

The distributions of the temperature and the relative concentration of the component are independent, in prac-
tice, of the thermal conductivity of the gas medium if the droplet is of high thermal conductivity. Around the volatile
particle, there is formed a gas mixture which transfers an uncompensated momentum to the body mainly by thermodif-
fusion:

  δ → (1 − C0) 
ανR

D
 (1 + 2kTT) + 2εKTD 

Lm1ανn0

ATκ0
′

 + 2 (1 + 2 (kTT − kTCKTD)) 






1 + 

Lm1ανn0

ATκ0
′

∂Cs

∂T



 T=τ

  






 ,

δ′ → (1 − C0) 
ανR

D
 kTT + εKTD 

Lm1ανn0

ATκ0
′

 + 2 (kTT − kTCKTD) 






1 + 

Lm1ανn0

ATκ0
′

∂Cs

∂T



 T=τ

  






 ,

δ′′  → εKTD 






1 + 

Lm1ανn0

ATκ0
′

∂Cs

∂T



 T=τ

  






 .
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It is of interest to investigate the dependence U = U(α). After intermediate computations we obtain

dU

dα
 = 2νΦ (κ0, κ0

′ ) 









2 

κ0

κ0
′

∂Cs

∂T



 T=τ

 − εKTD  









 

1

δ2 ,

Φ (κ0, κ0
′ ) = 

1

C0 + (1 − C0) 
m2

m1

 






1 + 2 

κ0

κ0
′
 + 2 (kTT − kTCKTD)







 −

− 2KTsl 
η0

ρ0

 



(1 − C0) 

kTC

D
 + 

Lm1n0

T0κ0
′




 + KDsl 







(1 − C0) 







1 + 2 

κ0

κ0
′
 + 2kTT







 + 2KTD 

Lm1n0D

T0κ0
′







 .

The dependence U(α) has a monotone character (decreasing or increasing). The quantity UTph is not related
to the quantity α in two cases where the derivative of the function U = U(α) vanishes:

Φ (κ0, κ0
′ ) = 0 ,   2 

κ0

κ0
′
 
∂Cs

∂T






 T=τ

 − εKTD = 0 .

The first relation between the physical quantities which characterizes the state of media outside the high-viscosity
droplet and inside it potentially holds for low-thermal-conductivity aerosol particles, while the second equality holds
for high-thermal-conductivity particles.

A numerical analysis for a large (R = 100 µm) particle and a moderately large (R = 10 µm) particle shows
that in weak evaporation of a droplet of ethyl alcohol in the binary mixture of gases  C2H5OH–N2, the thermophoresis
rate depends very strongly on the coefficient α. The above relationship is very weak if 0.05 < α < 1. At ordinary tem-
peratures, the volatility of the alcohol increases the velocity of thermophoretic motion by 10–13% as compared to the
velocity U′ (C0 = 0.001–0.1, kTC = 0, KTD = 0). This conclusion is in agreement with the results of [11, 12]. However
the conclusions in these investigations devoted to solution of the problem of thermophoresis of a volatile spherical
aerosol particle repeat, in fact, results of the works references to which have been in given in [13, 14] but which have
not been presented in sufficient detail in [11, 12].

The influence of a temperature jump for moderately large particles (R = 10 µm) leads to an increase of 6–8%
in the thermophoresis rate, which is clearly seen in Fig. 1.

This work represent an alternative to the existing traditional theories [4, 15–17]. Its results coincide with those
obtained earlier only when the condition Cs(T0) << 1 holds. However, in passage to a moderately large volatile pure
high-viscosity aerosol particle the inequality ανR ⁄ D >> 1 fails even in very strong diffusion evaporation, when α D 1.
In other words, the rate of thermophoretic transfer of a single moderately large volatile solid sphere in the regime of

Fig. 2. Rate U of transfer of a pure droplet of ethyl alcohol vs. its radius R.
Curve 1 is constructed according to the formula of [4], while curves 2 and 3
employ expressions (24)–(27) for α = 1 and α = 0 respectively (T0 = 323 K,
C0 = 0.1, kTC = 0, KTD = 0, AT = 100 K/m). U, µm/sec; R, µm.
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weak and moderately strong processes of diffusion evaporation (α < 0.1) has dissimilar values if it is computed using
expressions (24)–(27) and the formula from [4]. Figure 2 gives the dependences of the value of the rate U of thermo-
phoresis on the radius R of a spherical droplet of ethyl alcohol in the mixture of gases C2H5OH–N2; they demonstrate
that in strong evaporation of a large aerosol particle (α → 1), the disagreement between the results of this work and
the traditional theory [4] attains 15%. This difference increases to 30% if the binary gas mixture is saturated with the
vapor of the volatile component when C0 → Cs(T0), all other things being equal. The theory constructed in the present
work is, probably, more general.

APPENDIX

Jn (ξ) = 
Pn−2 (ξ) − Pn (ξ)

2n − 1
 ,   n ≥ 2 ; (A1)

dJn (ξ)
dξ

 = − Pn−1 (ξ) ,   n ≥ 1 ; (A2)

(1 − ξ2) 
dPn (ξ)

dξ
 = n (n + 1) Jn+1 (ξ) ,   n ≥ 0 ; (A3)

  ∫ 

−1

+1

 Jn (ξ) dξ = 













2 ,

2
3

 ,

0 ,

   

0 ,

2 ,

n ≠ 0, 2 ;
(A4)

  ∫ 

−1

+1

 
Jm (ξ) Jn (ξ)

1 − ξ2
 dξ = 











0 ,

2
n (n − 1) (2n − 1)

 ,
     

m ≠ n ,

m = n ;
(A5)

  ∫ 

−1

+1

 Pm (ξ) Pn (ξ) dξ = 











0 ,

2
2n + 1

 ,
     

m ≠ n ,

m = n . (A6)

Orthogonality conditions of the (A5)–(A6) type hold, when m ≠ 0 and 1 and n ≠ 0 and 1.

NOTATION

r, radius vector of the point of observation, m; (r and θ, ϕ), spherical coordinates, m and rad; (ir, iθ, iϕ), di-
mensionless unit vectors corresponding to them; (n, s, iϕ), right-hand set of three dimensionless local characteristic unit
vectors; R, radius of curvature of the spherical surface of a high-viscosity droplet, m; U, velocity of the center of inertia
of the binary gas mixture, m/sec; UTph = −U, velocity of uniform thermophoretic motion of a volatile particle, m/sec;
FTph, FDph, Fα, Fv, and F, thermophoretic, diffusion-phoretic, and reactive forces, viscous resistance of the gaseous me-
dium, and resultant of all the forces, N; Kn and Re, dimensionless Knudsen and Reynolds numbers; Ψ(r) and v(r),
stream function and vector velocity field in the gaseous medium, m3/sec and m/sec; p(r), pressure in the gas mixture,
Pa; C(r), scalar field of relative concentration of the first component of the gas mixture; T(r) and T′(r), temperature
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distributions outside the droplet and inside it, K; Tw, average temperature on the aerosol-particle surface, K; T0 and
C0, unperturbed values of the temperature and the relative concentration of the volatile component (at the location of
the geometric center of the droplet in its absence), K and dimensionless; AT = (∇ T)∞, constant gradient of temperature
in the gas medium at infinity, K/m; KTsl and KDsl, dimensionless gaskinetic coefficients of thermal and diffusion slips
of the binary gas mixture; (VTT, VTC) and (kTT, kTC), gaskinetic coefficients of temperature jumps, m and dimension-
less; D, coefficient of mutual diffusion of the components of the gas mixture; m2/sec; KTD, dimensionless thermodif-
fusion relation; (n1, n2),  (m1, m2), and (λ1, λ2), number concentrations, masses, and mean free paths of the gas
molecules of the first and second sorts, m−3, kg, and m; n′, number concentration of the molecules of the condensed
phase, m−3; ρ and η, density and dynamic viscosity of the gas medium, kg/m3 and Pa⋅sec; κ and κ′, coefficients of
thermal conductivity of the gas medium and the droplet substance, J/(K⋅m); p1s, n1s, and Cs, pressure and number and
relative concentrations of the saturated vapor of the volatile condensed phase, Pa, m−3, and dimensionless; L, specific
vaporization heat, J/kg; α, dimensionless evaporation coefficient; µ, molar mass of the droplet substance, kg/mole; k
and Rg, Boltzmann constant and universal gas constant, J/K and J/(K⋅mole); ∇ , vector differential operator of first
order, m−1; E2 and ∆, differential operators of Stokes and Laplace of second order, m−2; ξ, dimensionless angular vari-
able; Cn

−1 ⁄ 2(ξ) = Jn(ξ) and Cn
+1 ⁄ 2(ξ) = Pn(ξ), dimensionless ultraspherical polynomials of Gegenbauer; a, b, c, d, e, f,

e′, f ′, g, and h, unknown dimensionless constants of expansion with a natural index. Subscripts: Tsl, thermal slip; Dsl,
diffusion slip; Tph, thermophoretic; Dph, diffusion-phoretic; s, saturated vapor; TD, thermodiffusion; α, reactive com-
ponent; v, vector velocity field; T, temperature; TT and TC at the temperature jumps, the first letter T denotes the tem-
perature field, the second letter denotes the conditionality of the temperature jump by the presence of the
inhomogeneity in the temperature T and the relative concentration C respectively; 1 and 2 at the physical quantities
denote molecules of the first and second sort; 0, unperturbed values; z, projections onto the Oz axis; s, projection onto
the tangential (s) direction; n, r, and θ, projection onto the normal (n), radial (r), and tangential (iθ) directions; w,
wall; ′, internal region; g, gas.
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